本文共 17489 字,大约阅读时间需要 58 分钟。
基于搭建的CDH6以及配置,我们来使Spark能够读写OSS(其他版本的Spark都是类似的做法,不再赘述)。
由于默认Spark并没有将OSS的支持包放到它的CLASSPATH里面,所以我们需要执行如下命令
下面的步骤需要在所有的CDH节点执行进入到$CDH_HOME/lib/spark目录, 执行如下命令
[root@cdh-master spark]# cd jars/[root@cdh-master jars]# ln -s ../../../jars/hadoop-aliyun-3.0.0-cdh6.0.1.jar hadoop-aliyun.jar[root@cdh-master jars]# ln -s ../../../jars/aliyun-sdk-oss-2.8.3.jar aliyun-sdk-oss-2.8.3.jar[root@cdh-master jars]# ln -s ../../../jars/jdom-1.1.jar jdom-1.1.jar
进入到$CDH_HOME/lib/spark目录,运行一个查询
[root@cdh-master spark]# ./bin/spark-shellWARNING: User-defined SPARK_HOME (/opt/cloudera/parcels/CDH-6.0.1-1.cdh6.0.1.p0.590678/lib/spark) overrides detected (/opt/cloudera/parcels/CDH/lib/spark).WARNING: Running spark-class from user-defined location.Setting default log level to "WARN".To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).Spark context Web UI available at http://x.x.x.x:4040Spark context available as 'sc' (master = yarn, app id = application_1540878848110_0004).Spark session available as 'spark'.Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/ .__/\_,_/_/ /_/\_\ version 2.2.0-cdh6.0.1 /_/Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_152)Type in expressions to have them evaluated.Type :help for more information.scala> val myfile = sc.textFile("oss://{your-bucket-name}/50/store_sales")myfile: org.apache.spark.rdd.RDD[String] = oss://{your-bucket-name}/50/store_sales MapPartitionsRDD[1] at textFile at:24scala> myfile.count()res0: Long = 144004764scala> myfile.map(line => line.split('|')).filter(_(0).toInt >= 2451262).take(3)res15: Array[Array[String]] = Array(Array(2451262, 71079, 20359, 154660, 284233, 6206, 150579, 46, 512, 2160001, 84, 6.94, 11.38, 9.33, 681.83, 783.72, 582.96, 955.92, 5.09, 681.83, 101.89, 106.98, -481.07), Array(2451262, 71079, 26863, 154660, 284233, 6206, 150579, 46, 345, 2160001, 12, 67.82, 115.29, 25.36, 0.00, 304.32, 813.84, 1383.48, 21.30, 0.00, 304.32, 325.62, -509.52), Array(2451262, 71079, 55852, 154660, 284233, 6206, 150579, 46, 243, 2160001, 74, 32.41, 34.67, 1.38, 0.00, 102.12, 2398.34, 2565.58, 4.08, 0.00, 102.12, 106.20, -2296.22))scala> myfile.map(line => line.split('|')).filter(_(0) >= "2451262").saveAsTextFile("oss://{your-bucket-name}/spark-oss-test.1")
介绍了OSS Select,OSS Select目前已经在深圳区域实现商业化,下面的实验将基于oss-cn-shenzhen.aliyuncs.com这个OSS EndPoint来进行(基于CDH6,其他版本的Spark做法类似)。
下面的步骤需要在所有的CDH节点执行
下载OSS Select的Spark支持包(目前该支持包还在测试中),放到$CDH_HOME/jars下
[root@cdh-master jars]# pwd/opt/cloudera/parcels/CDH/jars[root@cdh-master jars]# ls -ltrh.....-rw-r--r-- 1 root root 20K 9月 20 03:45 jsr305-3.0.1.jar-rw-r--r-- 1 root root 114K 10月 30 16:12 aliyun-java-sdk-core-3.4.0.jar-rw-r--r-- 1 root root 770K 10月 30 16:12 aliyun-java-sdk-ecs-4.2.0.jar-rw-r--r-- 1 root root 535K 10月 30 16:12 aliyun-sdk-oss-3.3.0.jar-rw-r--r-- 1 root root 66K 10月 30 16:12 aliyun-oss-select-spark_2.11-0.1.0-SNAPSHOT.jar-rw-r--r-- 1 root root 13K 10月 30 16:12 aliyun-java-sdk-sts-3.0.0.jar-rw-r--r-- 1 root root 211K 10月 30 16:12 aliyun-java-sdk-ram-3.0.0.jar-rw-r--r-- 1 root root 870K 10月 30 16:13 jaxb-impl-2.2.3-1.jar-rw-r--r-- 1 root root 150K 10月 30 16:13 jdom-1.1.jar-rw-r--r-- 1 root root 145K 10月 30 16:13 jersey-json-1.9.jar-rw-r--r-- 1 root root 448K 10月 30 16:13 jersey-core-1.9.jar-rw-r--r-- 1 root root 56K 10月 30 16:13 json-20170516.jar-rw-r--r-- 1 root root 67K 10月 30 16:13 jettison-1.1.jar-rw-r--r-- 1 root root 26K 10月 30 16:13 stax-api-1.0.1.jar
进入到$CDH_HOME/lib/spark/jars
[root@cdh-master jars]# pwd/opt/cloudera/parcels/CDH/lib/spark/jars[root@cdh-master jars]# rm -f aliyun-sdk-oss-2.8.3.jar[root@cdh-master jars]# ln -s ../../../jars/aliyun-oss-select-spark_2.11-0.1.0-SNAPSHOT.jar aliyun-oss-select-spark_2.11-0.1.0-SNAPSHOT.jar[root@cdh-master jars]# ln -s ../../../jars/aliyun-java-sdk-core-3.4.0.jar aliyun-java-sdk-core-3.4.0.jar[root@cdh-master jars]# ln -s ../../../jars/aliyun-java-sdk-ecs-4.2.0.jar aliyun-java-sdk-ecs-4.2.0.jar[root@cdh-master jars]# ln -s ../../../jars/aliyun-java-sdk-ram-3.0.0.jar aliyun-java-sdk-ram-3.0.0.jar[root@cdh-master jars]# ln -s ../../../jars/aliyun-java-sdk-sts-3.0.0.jar aliyun-java-sdk-sts-3.0.0.jar[root@cdh-master jars]# ln -s ../../../jars/aliyun-sdk-oss-3.3.0.jar aliyun-sdk-oss-3.3.0.jar[root@cdh-master jars]# ln -s ../../../jars/jdom-1.1.jar jdom-1.1.jar
这里使用的是spark on yarn,其中Node Manager节点是4个,每个节点最多可以运行4个container,每个container配备的资源是1核2GB内存。
测试数据共630MB,包含3列,分别是姓名、公司和年龄。[root@cdh-master jars]# hadoop fs -ls oss://select-test-sz/people/Found 10 items-rw-rw-rw- 1 63079930 2018-10-30 17:03 oss://select-test-sz/people/part-00000-rw-rw-rw- 1 63079930 2018-10-30 17:03 oss://select-test-sz/people/part-00001-rw-rw-rw- 1 63079930 2018-10-30 17:05 oss://select-test-sz/people/part-00002-rw-rw-rw- 1 63079930 2018-10-30 17:05 oss://select-test-sz/people/part-00003-rw-rw-rw- 1 63079930 2018-10-30 17:06 oss://select-test-sz/people/part-00004-rw-rw-rw- 1 63079930 2018-10-30 17:12 oss://select-test-sz/people/part-00005-rw-rw-rw- 1 63079930 2018-10-30 17:14 oss://select-test-sz/people/part-00006-rw-rw-rw- 1 63079930 2018-10-30 17:14 oss://select-test-sz/people/part-00007-rw-rw-rw- 1 63079930 2018-10-30 17:15 oss://select-test-sz/people/part-00008-rw-rw-rw- 1 63079930 2018-10-30 17:16 oss://select-test-sz/people/part-00009
进入到$CDH_HOME/lib/spark/,启动spark-shell
[root@cdh-master spark]# ./bin/spark-shellWARNING: User-defined SPARK_HOME (/opt/cloudera/parcels/CDH-6.0.1-1.cdh6.0.1.p0.590678/lib/spark) overrides detected (/opt/cloudera/parcels/CDH/lib/spark).WARNING: Running spark-class from user-defined location.Setting default log level to "WARN".To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).Spark context Web UI available at http://x.x.x.x:4040Spark context available as 'sc' (master = yarn, app id = application_1540887123331_0008).Spark session available as 'spark'.Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/ .__/\_,_/_/ /_/\_\ version 2.2.0-cdh6.0.1 /_/Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_152)Type in expressions to have them evaluated.Type :help for more information.scala> val sqlContext = spark.sqlContextsqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@4bdef487scala> sqlContext.sql("CREATE TEMPORARY VIEW people USING com.aliyun.oss " + | "OPTIONS (" + | "oss.bucket 'select-test-sz', " + | "oss.prefix 'people', " + // objects with this prefix belong to this table | "oss.schema 'name string, company string, age long'," + // like 'column_a long, column_b string' | "oss.data.format 'csv'," + // we only support csv now | "oss.input.csv.header 'None'," + | "oss.input.csv.recordDelimiter '\r\n'," + | "oss.input.csv.fieldDelimiter ','," + | "oss.input.csv.commentChar '#'," + | "oss.input.csv.quoteChar '\"'," + | "oss.output.csv.recordDelimiter '\n'," + | "oss.output.csv.fieldDelimiter ','," + | "oss.output.csv.quoteChar '\"'," + | "oss.endpoint 'oss-cn-shenzhen.aliyuncs.com', " + | "oss.accessKeyId 'Your Access Key Id', " + | "oss.accessKeySecret 'Your Access Key Secret')")res0: org.apache.spark.sql.DataFrame = []scala> val sql: String = "select count(*) from people where name like 'Lora%'"sql: String = select count(*) from people where name like 'Lora%'scala> sqlContext.sql(sql).show()+--------+|count(1)|+--------+| 31770|+--------+scala> val textFile = sc.textFile("oss://select-test-sz/people/")textFile: org.apache.spark.rdd.RDD[String] = oss://select-test-sz/people/ MapPartitionsRDD[8] at textFile at:24scala> textFile.map(line => line.split(',')).filter(_(0).startsWith("Lora")).count()res3: Long = 31770
然后我们分别看使用OSS Select与不使用OSS Select的时间对比,可以看到,使用OSS Select的时间是不使用OSS Select时间的四分之一。
我们通过扩展Spark的来实现Spark对接OSS Select。通过实现PrunedFilteredScan,我们可以把需要的列和过滤条件下推到OSS Select执行。目前这个支持包还在开发中,定义的规范如下:
scala> sqlContext.sql("CREATE TEMPORARY VIEW people USING com.aliyun.oss " + | "OPTIONS (" + | "oss.bucket 'select-test-sz', " + | "oss.prefix 'people', " + // objects with this prefix belong to this table | "oss.schema 'name string, company string, age long'," + // like 'column_a long, column_b string' | "oss.data.format 'csv'," + // we only support csv now | "oss.input.csv.header 'None'," + | "oss.input.csv.recordDelimiter '\r\n'," + | "oss.input.csv.fieldDelimiter ','," + | "oss.input.csv.commentChar '#'," + | "oss.input.csv.quoteChar '\"'," + | "oss.output.csv.recordDelimiter '\n'," + | "oss.output.csv.fieldDelimiter ','," + | "oss.output.csv.quoteChar '\"'," + | "oss.endpoint 'oss-cn-shenzhen.aliyuncs.com', " + | "oss.accessKeyId 'Your Access Key Id', " + | "oss.accessKeySecret 'Your Access Key Secret')")
字段 | 说明 |
---|---|
oss.bucket | 数据所在的bucket |
oss.prefix | 拥有这个前缀的Object都属于定义的这个TEMPORARY VIEW |
oss.schema | 这个 TEMPORARY VIEW的schema,目前通过字符串指定,后续会通过一个文件来指定schema |
oss.data.format | 数据内容的格式,目前支持CSV格式,其他格式也会陆续支持 |
oss.input.csv.* | 定义CSV输入格式参数 |
oss.output.csv.* | 定义CSV输出格式参数 |
oss.endpoint | bucket所在的Endpoint |
oss.accessKeyId | 你的Access Key Id |
oss.accessKeySecret | 你的Access Key Secret |
目前只定义基本参数,可以参考,其余的参数也在支持中。
支持的过滤条件:=,<,>,<=, >=,||,or,not,and,in,like(StringStartsWith,StringEndsWith,StringContains)。对于不能下推的过滤条件(如算术运算、字符串拼接等,这些通过PrunedFilteredScan获取不到),则只下推需要的列到OSS Select。
然而,OSS Select还支持其他过滤条件,可以参考
主要对比TPC-H中query1.sql对于lineitem这个table的查询性能,为了能使OSS Select过滤更多的数据,我们将where条件改一下(由l_shipdate <= '1998-09-16'改为where l_shipdate > '1997-09-16'),测试数据大小是2.27GB
[root@cdh-master ~]# hadoop fs -ls oss://select-test-sz/data/lineitem.csv-rw-rw-rw- 1 2441079322 2018-10-31 11:18 oss://select-test-sz/data/lineitem.csv
对比如下
scala> import org.apache.spark.sql.types.{IntegerType, LongType, StringType, StructField, StructType, DoubleType}import org.apache.spark.sql.types.{IntegerType, LongType, StringType, StructField, StructType, DoubleType}scala> import org.apache.spark.sql.{Row, SQLContext}import org.apache.spark.sql.{Row, SQLContext}scala> val sqlContext = spark.sqlContextsqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@74e2cfc5scala> val textFile = sc.textFile("oss://select-test-sz/data/lineitem.csv")textFile: org.apache.spark.rdd.RDD[String] = oss://select-test-sz/data/lineitem.csv MapPartitionsRDD[1] at textFile at:26scala> val dataRdd = textFile.map(_.split('|'))dataRdd: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[2] at map at :28scala> val schema = StructType( | List( | StructField("L_ORDERKEY",LongType,true), | StructField("L_PARTKEY",LongType,true), | StructField("L_SUPPKEY",LongType,true), | StructField("L_LINENUMBER",IntegerType,true), | StructField("L_QUANTITY",DoubleType,true), | StructField("L_EXTENDEDPRICE",DoubleType,true), | StructField("L_DISCOUNT",DoubleType,true), | StructField("L_TAX",DoubleType,true), | StructField("L_RETURNFLAG",StringType,true), | StructField("L_LINESTATUS",StringType,true), | StructField("L_SHIPDATE",StringType,true), | StructField("L_COMMITDATE",StringType,true), | StructField("L_RECEIPTDATE",StringType,true), | StructField("L_SHIPINSTRUCT",StringType,true), | StructField("L_SHIPMODE",StringType,true), | StructField("L_COMMENT",StringType,true) | ) | )schema: org.apache.spark.sql.types.StructType = StructType(StructField(L_ORDERKEY,LongType,true), StructField(L_PARTKEY,LongType,true), StructField(L_SUPPKEY,LongType,true), StructField(L_LINENUMBER,IntegerType,true), StructField(L_QUANTITY,DoubleType,true), StructField(L_EXTENDEDPRICE,DoubleType,true), StructField(L_DISCOUNT,DoubleType,true), StructField(L_TAX,DoubleType,true), StructField(L_RETURNFLAG,StringType,true), StructField(L_LINESTATUS,StringType,true), StructField(L_SHIPDATE,StringType,true), StructField(L_COMMITDATE,StringType,true), StructField(L_RECEIPTDATE,StringType,true), StructField(L_SHIPINSTRUCT,StringType,true), StructField(L_SHIPMODE,StringType,true), StructField(L_COMMENT,StringType,true))scala> val dataRowRdd = dataRdd.map(p => Row(p(0).toLong, p(1).toLong, p(2).toLong, p(3).toInt, p(4).toDouble, p(5).toDouble, p(6).toDouble, p(7).toDouble, p(8), p(9), p(10), p(11), p(12), p(13), p(14), p(15)))dataRowRdd: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[3] at map at :30scala> val dataFrame = sqlContext.createDataFrame(dataRowRdd, schema)dataFrame: org.apache.spark.sql.DataFrame = [L_ORDERKEY: bigint, L_PARTKEY: bigint ... 14 more fields]scala> dataFrame.createOrReplaceTempView("lineitem")scala> spark.sql("select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from lineitem where l_shipdate > '1997-09-16' group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus").show()+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+------------------+-------------------+-----------+|l_returnflag|l_linestatus| sum_qty| sum_base_price| sum_disc_price| sum_charge| avg_qty| avg_price| avg_disc|count_order|+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+------------------+-------------------+-----------+| N| O|7.5697385E7|1.135107538838699...|1.078345555027154...|1.121504616321447...|25.501957856643052|38241.036487881756|0.04999335309103123| 2968297|+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+------------------+-------------------+-----------+scala> sqlContext.sql("CREATE TEMPORARY VIEW item USING com.aliyun.oss " + | "OPTIONS (" + | "oss.bucket 'select-test-sz', " + | "oss.prefix 'data', " + | "oss.schema 'L_ORDERKEY long, L_PARTKEY long, L_SUPPKEY long, L_LINENUMBER int, L_QUANTITY double, L_EXTENDEDPRICE double, L_DISCOUNT double, L_TAX double, L_RETURNFLAG string, L_LINESTATUS string, L_SHIPDATE string, L_COMMITDATE string, L_RECEIPTDATE string, L_SHIPINSTRUCT string, L_SHIPMODE string, L_COMMENT string'," + | "oss.data.format 'csv'," + // we only support csv now | "oss.input.csv.header 'None'," + | "oss.input.csv.recordDelimiter '\n'," + | "oss.input.csv.fieldDelimiter '|'," + | "oss.input.csv.commentChar '#'," + | "oss.input.csv.quoteChar '\"'," + | "oss.output.csv.recordDelimiter '\n'," + | "oss.output.csv.fieldDelimiter ','," + | "oss.output.csv.commentChar '#'," + | "oss.output.csv.quoteChar '\"'," + | "oss.endpoint 'oss-cn-shenzhen.aliyuncs.com', " + | "oss.accessKeyId 'Your Access Key Id', " + | "oss.accessKeySecret 'Your Access Key Secret')")res2: org.apache.spark.sql.DataFrame = []scala> sqlContext.sql("select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from item where l_shipdate > '1997-09-16' group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus").show()scala> sqlContext.sql("select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from item where l_shipdate > '1997-09-16' group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus").show()+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+-----------------+-------------------+-----------+|l_returnflag|l_linestatus| sum_qty| sum_base_price| sum_disc_price| sum_charge| avg_qty| avg_price| avg_disc|count_order|+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+-----------------+-------------------+-----------+| N| O|7.5697385E7|1.135107538838701E11|1.078345555027154...|1.121504616321447...|25.501957856643052|38241.03648788181|0.04999335309103024| 2968297|+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+-----------------+-------------------+-----------+
耗时对比如下
其中使用Spark SQL与在Spark SQL上使用OSS Select耗时分别是2.5分钟和38秒。
转载地址:http://huncx.baihongyu.com/